COMPARATIVE ACTION OF SALSOLINE, SALSOLIDINE, AND RELATED COMPOUNDS ON KML TISSUE CULTURE AND ANIMAL TUMOR STRAINS

N. N. Kuznetsova, L. K. Abdullaeva, and A. A. Sadikov

UDC 615.277.3

The alkaloids salsoline (1) and salsolidine (6) are derivatives of methyltetrahydroquinoline and were isolated from *Salsola richteri* L. (Chenopodiaceae) [1].

They are known to dilate peripheral arteries and lower blood pressure.

Our goal was to determine the cytotoxicity in KML cell culture, the toxicity (LD_{50}), and the antitumor activity of 1, 6, and eight of their derivatives (2-5 and 7-10) in addition to four hydrogenated quinoline derivatives (11-14) [2].

$$\begin{array}{c} \text{MeO} \\ \text{R} \\ \text{H}_{3}\text{C} \\ \\ \text{R} \\ \\ \text{1-10} \\ \end{array}$$

1:
$$R = OH, R_1 = H$$
6: $R = OCH_3, R_1 = H$ 12: $R = NO$ 2: $R = OH, R_1 = NO$ 7: $R = OCH_3, R_1 = NO$ 13: $R = CH_2CH_2CI$ 3: $R = OH, R_1 = CH_2CH_2CN$ 8: $R = OCH_3, R_1 = CH_2CH_2CN$ 14: $R = CH_2CH_2CN$ 4: $R = OH, R_1 = CH_2CH_2CI$ 9: $R = OCH_3, R_1 = CH_2CH_2CI$ 5: $R = OH, R_1 = CH_2CH_2OH$ 10: $R = OCH_3, R_1 = CH_2CH_2OH$

For the initial screening, we used a murine melanoma cell line developed by us [3]. The cytotoxic activities of vinblastine and colchamine were studied first. This established that the line was sensitive to known antitumor preparations. The CE_{50} of these preparations was 1 μ g/mL and less [4, 5].

Then, the activities of 1-14 toward the tested KML tumor cell line [6] were studied.

The cytotoxic test was performed with compound doses of 1, 10, and 100 $\mu g/mL$ of nutrient medium. The control was KML cells without added compound.

Cells ($4\cdot10^4$ cells/mL) were dispersed in tubes with RPMI-1640 nutrient medium (3 mL) with fetal-calf serum (10%), glutamine (200 mM), and antibiotics and cultivated in a thermostat at 37°C. Compounds were added to the cells 24 h after dispersion. Cells were exposed to the compounds for 24 h. Then, 14 C-thymidine (0.03 μ Ci/tube) was added for 1 h. The cytotoxic activities of the compounds were calculated from the amount of 14 C-thymidine inclusion in cellular DNA.

The results were calculated as percent inhibition of ^{14}C -thymidine incorporation versus the control. Then, CE_{50} [7] was determined graphically from plots of the effect as a function of the dose of each compound, i.e., that concentration at which the resulting index was reduced by half (50% cell effect). A compound was considered active if a dose of less than 100 $\mu\text{g/mL}$ was required to reach CE_{50} [5].

A. S. Sadykov Institute of Bioorganic Chemistry, Academy of Sciences of the Republic of Uzbekistan, Tashkent, fax (99871) 162 70 73, e-mail: ibchem@uzsci.net. Translated from Khimiya Prirodnykh Soedinenii, No. 2, pp. 186-187, March-April, 2005. Original article submitted September 13, 2004.

TABLE 1. Cytotoxic and Antitumor Activities of 4, 9, 11, 12, and 13*

Compound	CE_{50} , mg/mL for ^{14}C thymidine incorporation	LD ₅₀ , mg/kg	Animal tumor strain			
			EAC	NK/Ly	s-180	Walker's c-s
4**	30±2.5	340±3.3	25±1.1	-	35±0.8	-
9**	50±1.2	360 ± 3.4	20±0.6	-	30 ± 0.3	-
11	64 ± 2.2	385 ± 4.1	57±1.2	76 ± 2.9	85 ± 2.1	95±3.2
12	80±2.5	500 ± 3.2	74 ± 3.7	68±1.3	47±1.6	62 ± 2.3
13**	16±0.6	250±2.3	20±0.3	-	35±1.1	-

^{*}Data for active compounds only are included, **4, 9, and 13 are inactive toward NK/Ly and Walker's c-s.

The antitumor effect was estimated in percent of the control from the increased lifespan of tumor-bearing animals by the usual method [5]. The toxicities of the compounds were determined from the LD_{50} values, also obtained using the usual method [5]. Experiments, including the controls, were repeated three times. The controls were cells or tumor-bearing animals without administered preparations. Two of the ten isoquinoline compounds with an N-(β -chloroethyl) group (4 and 9) were active in the *in vitro* system. The concentrations of these compounds, 30 and 50 μ g/mL, respectively, were within the range of ¹⁴C-incorporation to be considered active (Table 1).

Compounds 1 and 6 and their derivatives 2, 3, 5, 7, 8, and 10 were inactive. Compounds 4 and 9 had mild toxicities, LD_{50} values of 340 and 360 mg/kg, respectively, or had no effect on the experimental animal tumor lines. They inhibited growth of Ehrlich's ascites cancer (EAC) and sarcoma-180 (s-180) only by from 20 to 35%.

Three of the four quinoline compounds were active in both the *in vitro* and *in vivo* systems. These were N-nitrosotetrahydroquinoline (11), N-nitrosodecahydroquinoline (12), and N-(β -chloroethyl)decahydroquinoline (13). The CE₅₀ values for ¹⁴C-thymidine incorporation for these compounds were 64, 80, and 16 μ g/mL, respectively. The antitumor activities of 11-14 were studied in animals with grafted tumor strains, namely EAC, NK/Ly, s-180, and Walker's carcinosarcoma (c-s).

The highest antitumor activities were seen for **11** toward EAC, s-180, NK/Ly, and Walker's c-s (57, 85, 76, and 95% tumor-growth inhibition, respectively) and for **12** toward EAC, s-180, NK/Ly, and Walker's s-c (74, 68, 47, and 62%, respectively). Compound **13** slightly inhibited the growth of EAC (20%) and s-180 (35%). Compound **14** was inactive in both systems. Compounds **11** and **13** were toxic. The LD₅₀ values for them were 385 and 500 mg/kg, respectively.

Thus, 5 active compounds were found among the 14 derivatives in the *in vitro* and *in vivo* systems.

The cytotoxicities of the salsoline and salsolidine derivatives can be explained by the formation of active three-membered immonium rings and by the labile conformation of the carrier system [7]. The biological activities of N-nitrosotetrahydroquinoline and N-nitrosodecahydroquinoline can be explained by activation of the nitrosoamines by oxidation of the C atom in the α -position to the N–NO group and subsequent hydrolysis to form the alkylating species [5].

Based on the cytotoxic activities, the LD_{50} values, and the antitumor activities, 11 and 12 can be recommended as promising cancerolytics.

REFERENCES

- 1. A. P. Orekhov, *Chemistry of Alkaloids* [in Russian], Izd. Akad. Nauk SSSR, Moscow (1953), p. 135.
- 2. M. Karimov, Candidate Dissertation in Chemical Sciences, Tashkent (1975).
- 3. N. N. Kuznetsova, Z. I. Mardanova, V. B. Leont'ev, Z. S. Khashimova, and A. A. Sadikov, *Rasmii Akhborotnoma*, No. 4, 30 (2001); Pat. IDP, N04808.
- 4. Z. P. Sof'ina, Methodical Recommendations [in Russian], Moscow (1980)
- 5. I. P. Ashmarin and A. A. Vorob'ev, *Statistical Methods in Biological Research* [in Russian], Moscow (1963), p. 63.
- 6. Z. S. Khashimova, N. N. Kuznetsova, Z. I. Mardanova, and V. B. Leont'ev, Khim. Prir. Soedin., 372 (1999).
- 7. R. H. Cardy and W. Lijinsky, *Cancer Res.*, **40**, 1879 (1980).
- 8. M. K. Karimov, M. G. Levkovich, V. B. Leont'ev, A. S. Sadykov, Kh. A. Aslanov, T. K. Yunusov, and A. A. Sadykov, *Khim. Prir. Soedin.*, 486 (1974).